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The molecular landscape of Asian breast cancers
reveals clinically relevant population-specific
differences
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Bethan Sandey 3, Stephen-John Sammut3, Cheng-Har Yip 2,4, Pathmanathan Rajadurai4,

Oscar M. Rueda 3, Carlos Caldas 3,5,6, Suet-Feung Chin 3,8✉ & Soo-Hwang Teo 1,2,8✉

Molecular profiling of breast cancer has enabled the development of more robust molecular

prognostic signatures and therapeutic options for breast cancer patients. However, non-

Caucasian populations remain understudied. Here, we present the mutational, transcriptional,

and copy number profiles of 560 Malaysian breast tumours and a comparative analysis of

breast cancers arising in Asian and Caucasian women. Compared to breast tumours in

Caucasian women, we show an increased prevalence of HER2-enriched molecular subtypes

and higher prevalence of TP53 somatic mutations in ER+ Asian breast tumours. We also

observe elevated immune scores in Asian breast tumours, suggesting potential clinical

response to immune checkpoint inhibitors. Whilst HER2-subtype and enriched immune score

are associated with improved survival, presence of TP53 somatic mutations is associated with

poorer survival in ER+ tumours. Taken together, these population differences unveil

opportunities to improve the understanding of this disease and lay the foundation for pre-

cision medicine in different populations.
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Breast cancer is a heterogenous disease, where histopatho-
logical and clinico-demographic features guide treatment
choices—for example, use of endocrine treatment in oes-

trogen receptor-positive (ER+) tumours, use of HER2-targeted
treatment in Her2-positive tumours and use of chemotherapy in
women with poor prognostic features, such as high grade. The
development of molecular classifiers based on gene expression1,2

has led to a better understanding of the molecular subtypes of
breast cancer, and the development of molecular-based prog-
nostic tools such as OncoTypeDx has led to improved clinical
decision-making—for example, in determining the benefit of
chemotherapy in node-negative, ER+ disease3. Recognising that
breast cancer is a copy number driven disease4, we have improved
the stratification of breast cancers by integrating copy number
alterations (CNAs) and gene expression in the classification of
2000 primary tumours from the Molecular Taxonomy of Breast
Cancer International Consortium (METABRIC)5. The subtypes
identified, designated as Integrative Clusters (IntClust), have very
distinct molecular features, drivers and clinical courses6,7.

The molecular characterisation of breast tumours has also
enabled the development of new therapies, and the selection of
patients for the appropriate therapies. Gene expression8,9, tar-
geted sequencing7, whole-exome sequencing (WES)10–12 and
whole-genome sequencing (WGS) have revealed the genomics
drivers of breast cancer, uncovering hitherto unrecognised
therapeutic possibilities. Furthermore, mutational analysis has
identified tumour mutational burden13 and homologous recom-
bination (HR) deficiency14 as potential biomarkers for response
to immunotherapy and poly (ADP-ribose) polymerase (PARP)
inhibitors15,16, respectively.

Notably, the extent to which findings from these studies,
conducted predominantly in women of European descent, can be
applied to other populations where there are differences in
genetic, lifestyle and environmental factors remains largely
understudied. Triple-negative breast cancer is more common in
African-American women and a recent genomic analysis of 194
tumours show an increased HR deficiency signature, pervasive
TP53 mutations and greater structural variations, indicating a
more-aggressive biology17. Breast cancer in Asians tend to occur
at a younger age, with a higher proportion of pre-menopausal,
oestrogen receptor (ER) negative and human epidermal growth
factor receptor 2 (HER2) receptor-positive disease (reviewed in
Yap et al.18). A recent genomic analysis of 187 early-onset Asian
breast cancers show a higher prevalence of TP53 mutations and
enrichment in immune signatures19. In addition, analysis of 465
triple-negative breast cancers in Chinese women demonstrated
broad similarities in tumours of the same subtype arising in Asian
and Caucasian women, although Chinese patients had a sig-
nificantly higher proportion of the luminal androgen receptor
(LAR) subtype of TNBCs relative to Caucasian or African-
American patients9.

Given the potential impact of tumour subtypes, candidate
drivers, mutational signatures and immune profiles on treatment
options for breast cancer patients, and the hitherto lack of
detailed information in Asian breast cancer patients, we have
performed WES, shallow WGS (sWGS) and RNA-sequencing
(RNA-seq) of 560 breast tumours from a cohort of Asian patients
in Malaysia and report the impact of population differences on
the molecular profiles of breast cancer. Relative to Caucasian
women, we found a higher prevalence of HER2-enriched mole-
cular subtypes, as well as a higher prevalence of TP53 somatic
mutations in ER+ Asian breast tumours. Importantly, we also
found that Asian breast tumours have elevated immune scores.
HER2 subtype and elevated immune scores were found to be
associated with improved survival, whereas presence of TP53
somatic mutations was associated with poorer survival in ER+

tumours. Taken together, our findings set the stage for improving
precision medicine efforts for breast cancer in the Asian
populations.

Results
Study population and clinicopathological characteristics. Pri-
mary tumour tissue and blood samples (including three matched
bilateral and one matched primary-recurrence samples) were
obtained from 560 female patients with breast cancer treated at
the Subang Jaya Medical Centre (SJMC), Malaysia between 2012
and 2017 who were recruited to the Malaysian Breast Cancer
(MyBrCa) study20. The patients were recruited sequentially as
seen in the clinic from a year to year period. After excluding
samples that failed quality checks, data were generated for RNA-
seq (n= 527), WES (n= 546) and sWGS (n= 533). Compared
with patients in The Cancer Genome Atlas (TCGA)10, our
patients were younger, presented at later stages and had higher
proportions of ductal carcinoma and Her2 positivity (28.9%
MyBrCa versus 19.3% TCGA when NAs are excluded; Supple-
mentary Table 1). The MyBrCa tumour cohort includes Malay-
sians from a number of different ethnicities, primarily Chinese
(89%), Malay (4.6%) and Indian (3.4%) (Supplementary Table 1),
and is as a whole genetically similar to other East/Southeast Asian
populations according to genotyping analysis21. A principal
component analysis of our RNA-seq data did not reveal any
significant differences across different ethnicities (Supplementary
Fig.1).

Asian breast tumours exhibit higher prevalence of Her2-
positive disease. Clustering of the tumour profiles of the MyBrCa
samples according to IntClust5 and PAM502 (Fig. 1 and Sup-
plementary Fig. 2, respectively) showed a higher prevalence of the
Her2-enriched molecular subtypes, particularly IntClust 5 (13.1%
in MyBrCa versus 7.9% in Caucasians; Fig. 1a) and the PAM50
Her2-enriched subtype (23.3% in MyBrCa versus 9.9% in Cau-
casians; Supplementary Fig. 2a). We also observed a higher pre-
valence of ER-negative Integrative Cluster 4 (IntClust 4-; 9.1% in
MyBrCa, 7.6% in other Asians versus 4.6% in Caucasians;
Fig. 1a).

Given that the median age of diagnosis of breast cancer was 49
years in Asians and 61 years in Caucasians, we examined the
distribution of subtypes in women above and below the age of 50.
In women below 50 years of age (n= 206), there were no
statistically significant differences between Asians and Caucasians
in IntClust subtypes (Fig. 1b), but there was an increased
prevalence in the PAM50 Luminal B subtype (Supplementary
Fig. 2b). In women above 50 years of age (n= 321; Fig. 1c,
Supplementary Fig. 2c), we see the significant differences noted
above in the whole population analysis, i.e., there was a markedly
higher prevalence of Her2-positive disease: (a) IntClust 4- (11.8%
in MyBrCa, 10% in other Asians, 4.1% in Caucasians), (b)
IntClust 5 (14.6% in MyBrCa, 15% in other Asians, 7.4% in
Caucasians) and (c) PAM50 Her2-enriched subtype (27.4% in
MyBrCa, 30% in other Asians, 10.6% in Caucasians), suggesting
that it is in this age group where population-specific differences
are mainly observed.

In addition, we also conducted a naive combined cluster
analysis using gene expression data from the MyBrCa and TCGA
Caucasian cohorts in order to determine whether there were any
molecular subtypes that may be unique to Asians or Caucasians.
However, unsupervised k-means consensus clustering did not
reveal any exclusive clusters, but did support a higher prevalence
of Her2-enriched subtypes and a lower prevalence of luminal
subtypes in Asians (Supplementary Fig. 3).
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Finally, we classified the TNBC samples of the MyBrCa cohort
into LAR, mesenchymal-like (MES), immunomodulatory (IM)
and basal-like immune-suppresed (BLIS) TNBC subtypes using
hierarchical clustering with the 80-gene signature from Burstein
et al.22 (Supplementary Fig. 4a). We found that the prevalence of
each subtype was comparable with previous studies, with a
relatively high prevalence of the LAR subtype (35%) that is
consistent with reports from other Asian cohorts9 (Supplemen-
tary Fig. 4b).

Asian ER-positive breast tumours exhibit elevated TP53
mutations. To understand the mutational architecture of
MyBrCa tumours, we performed WES at a median coverage of
75× (range 5–123×) and 40× (range 5–77×) for 546 paired
tumours and matched normal blood, respectively, and deter-
mined their somatic single-nucleotide variant and short insertion
or deletion (indel) mutations. We identified 39,372 SNVs (18,508

nonsynonymous) and 1262 indels, with a median somatic muta-
tion count of 45 SNVs and 2 indels per sample. We found similar
subtype-specific nonsynonymous sSNVs and indel mutations as
previously reported (Fig. 2a)7,23. The most frequently mutated
genes are TP53 (42.9%), PIK3CA (27.8%), GATA3 (9.7%),
MAP3K1 (5.5%), KMT2C (4.2%), PTEN (4.2%), CBFB (4.0%),
CDH1 (4.0%), AKT1 (3.3%) and NF1 (3.1%). Within the mole-
cular subtypes, we observed that TP53 mutation rates were high in
IntClusts 5 and 10, and low in IntClusts 3 and 8. In contrast,
PIK3CAmutation rates were high in IntClusts 3 and 8, with 96.4%
of the PIK3CA variants being missense variants and concentrated
at the known hotspot positions (Supplementary Fig. 5). The
majority of GATA3 mutations were protein truncating (98.1%;
Supplementary Fig. 5), with high frequencies in IntClusts 1 and 8.
MAP3K1 mutation frequencies were high in IntClust 7, whereas
mutations of CBFB and CDH1 were high in IntClust 8.

Interestingly, TP53 mutations were more common in Asians
compared with Caucasians (42.9% compared with 30–35%;

a

b

c

15

Fr
eq

ue
nc

y 
(%

)

A
ll 

sa
m

p
le

s
A

g
e 

< 
50

A
g

e 
≥ ≥ 

50

10

5

0

1 2 4+ 5 6 7 8 9 103 4–

1 2 4+ 5 6 7 8 9 103 4–

1 2 4+ 5

IntClust subtype
6 7 8 9 103 4–

15

Fr
eq

ue
nc

y 
(%

)

10

5

0

20

15

Fr
eq

ue
nc

y 
(%

)

10

5

0

0.002

0.015

0.036

0.002

1.2e–4

1.6e–8 2.8e–5

1.5e–5

8.1e–4

MyBrCa (527)
Other Asian (235)
Caucasian (2974)

MyBrCa (206)
Other Asian (184)
Caucasian (643)

MyBrCa (321)
Other Asian (60)
Caucasian (2174)

Fig. 1 Molecular subtypes of Malaysian breast cancer. Comparison of Integrative Cluster molecular subtype distribution across Malaysian (MyBrCa),
other Asian (Korean, TCGA Asian) and Caucasian (TCGA Caucasian, METABRIC, Nik-Zainal 201623) cohorts. Comparisons were done using the full
cohorts a as well as with only patients below b or above c the age of 50. Numbers above the bars are p values denoting significant differences between
Asians and Caucasians for that subtype, as determined by Pearson’s chi-square test. Numbers in the figure legend indicate sample size.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20173-5 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:6433 | https://doi.org/10.1038/s41467-020-20173-5 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Luminal A

1a

b

c

d

4+4– 5 7 9 NA108632 lntClust
PR
ER
HER2

Luminal B
Her2-enriched
Basal-like
Normal-like

Multi-hit

P = 0.0030

T53P MAP3K1 CDH1

T53P MAP3K1 CDH1

40

20ER+

ER–

20

10

0

20

10

0

20

10

0

20

10

0

%
 s

am
pl

es
%

 s
am

pl
es

%
 s

am
pl

es

0

100
80
60
40
20
0

100

80

50
40

20

0
1 2 13 3 8 6 15 20 26 30 17 185

70

P = 0.0207

P = 0.0331

P = 0.0345

Inframe indel/missense

Fig. 2 Mutational landscape of MyBrCa tumours. a Somatic nonsynonymous SNV and indel mutations of top mutated genes. Genes are sorted by the total
mutation rates of MyBrCa cohort. b Copy number aberration of breast cancer-related genes. Genes are sorted according to difference in number of
samples carrying amplified over deleted copy of the genes, and genes within the same locus are grouped together for clarity. Samples are ordered as in
a. NA: IntClust classification could not be determined owing to unavailability of RNA-seq. c Comparison of mutational prevalence of TP53, MAP3K1 and
CDH1 in Asian (MyBrCa, Kan et al., 201819 “Korean”, Asian TCGA, Korean samples from Nik-Zainal et al., 201623 “WGS Asian”) and Caucasian
(METABRIC, Caucasian TCGA, Nik-Zainal et al., 201623 “WGS Caucasian”) breast tumours, separated by ER status. d Frequencies of samples in Asian or
Caucasian datasets carrying breast cancer-related mutational signatures. P value from two-sided student’s t test.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20173-5

4 NATURE COMMUNICATIONS |         (2020) 11:6433 | https://doi.org/10.1038/s41467-020-20173-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Supplementary Fig. 6), and this difference was observed only in
ER+ tumours and IntClust 8 (Fig. 2c, Supplementary Figs. 6–8;
p= 0.003 and p= 0.035, respectively). However, there was no
significant difference in the location of the mutations, with 83%
and 84.8% of mutations occurring in the DNA binding domain of
TP53 for ER+ Asian and Caucasian samples, respectively (86.6%
vs 83% for ER– samples; Supplementary Fig. 9). MAP3K1
mutation rates were lower in Asians irrespective of ER status
(Fig. 2c; p= 0.02 and p= 0.03 in ER+ and ER–, respectively),
whereas CDH1 mutation rates were lower in ER+ Asian tumours
(p= 0.03), although there was no difference in CDH1 mutation
rates after accounting for histological subtype (Supplementary
Fig. 10).

We performed driver gene analyses24 (Supplementary Fig. 11,
Supplementary Tables 2 and 3) and identified well-established
breast cancer oncogenes and tumour suppressors. For example,
regardless of ER status or ethnicity, PIK3CA and AKT1 have high
oncogene (ONC) but low tumour suppressor gene (TSG) scores,
consistent with their established roles as known breast cancer
oncogenes, while known tumour suppressors TP53, RB1 and
PTEN have elevated TSG scores. We also observed high TSG
scores for MAP3K1 and high ONC for CDKN1B in ER+ as
previously noted7. We also observed preferentially higher SF3B1
mutations in ER+ samples, with the recurrent K700E mutation
enriched in Caucasians ER+ tumours25 (Caucasian ER+ ONC=
58.6 vs Asian ER+ ONC= 12.5). We additionally examined
pairwise association of somatic mutations (Supplementary Fig. 12)
in Asian or Caucasian breast tumours. We observed mutual
exclusivity between TP53 and each of CDH1 and GATA3,
between PIK3CA and each of CDH1 and MAP3K1, and between
GATA3 and CBFB as previously noted7 in Asians and Caucasians
tumours (Supplementary Fig. 12). Finally, an analysis of tumours
with germline pathogenic variants in six high to moderate breast
cancer susceptibility genes did not reveal any significant
differences between our cohort and TCGA26, except for a
marginally significant higher prevalence in germline PALB2
mutations (Supplementary Table 4).

Analysis of CNA using whole-genome sequencing at 0.1×
coverage revealed frequently altered regions in chromosomes 1, 8,
16 and 17 (Supplementary Fig. 13), similar to what has been
found in previous large genomic studies (TCGA, METABRIC).
High-level amplifications were observed in known oncogenes
such as ERBB2 and MYC, while deletions were observed in loci
encompassing TP53 and MAP2K4. We observed IntClust-specific
CNAs (Fig. 2b and Supplementary Fig. 14): for example,
amplification of ERBB2 at 17q12 in IntClust5; amplification of
17q23 encompassing RPS6KB1, PTRH2, APPBP2 and PPM1D in
IntClust1, amplification of two distinct amplicons around 11q13
(CCND1 and EMSY, RSF1, and INTS4) in IntClust2, and
amplification of ZNF703 at 8p12 in IntClust6.

We also used copy number data to estimate the fraction of
cancer cells that harbour mutations for nine common driver
genes, and found that most genes had median mutational cancer
cell fractions (CCF) of 1, suggesting that mutations in these genes
are clonal and tend to occur early during tumour development
(Supplementary Fig. 15).

Together, WES and sWGS analyses suggest that the subtype-
specific somatic SNVs, indels, CNA and CCF patterns in our
cohort are similar to that previously described in other Asian or
European populations, with the notable exception that TP53
mutations are more common in ER+ Asian breast cancers.

Asian and Caucasian breast tumours exhibit similar muta-
tional signatures. We compared the mutational signatures pre-
viously detected in breast tumours23,27,28: Signature 1 and 5

(clock-like), Signatures 2 and 13 (APOBEC enzymatic activity),
Signatures 3 and 8 (DNA repair deficiency), Signatures 6, 15, 20
and 26 (mismatch repair (MMR) deficiency), and Signature 30
(base-excision repair protein Nth Like DNA Glycosylase 1 defi-
ciency). We also included Signatures 17 and 18 that have been
previously detected in breast tumours, yet of unknown aetiology.

We found only minor differences in the mutational signatures
between Asian and Caucasian breast tumours (Fig. 2d, Supple-
mentary Fig. 16). Whilst we observed a higher percentage of
Korean samples (Korean and WGS Asian) with the HR deficiency
Signature 3 as previously reported19, this was not observed in
other Asian datasets (MyBrCa and TCGA Asian; Fig. 2d).
Significantly, we found a higher percentage of Asian breast
tumours with Signature 13, consistent with the higher prevalence
of the APOBEC3B germline deletion polymorphism among the
population (p= 0.0486). No differences for other mutational
signatures were observed (Fig. 2d).

We extended the analysis to molecular subtypes and found no
significant difference in the distribution of mutational signatures
based on ethnicity. IntClusts 3 and 8 samples primarily have high
Signature 1, and moderate number of samples with Signatures 2,
13 and 3, and consistent with this, ER+ luminal A tumours by
PAM50 classification show an elevated percentage of samples
with Signature 1 as well (Supplementary Fig. 17, 18). IntClust
5 samples have high Signature 2 and 13, and consistent with this,
the Her2-enriched tumours by PAM50 classification show an
elevated percentage of samples with Signatures 2 and 13,
suggesting increased APOBEC enzymatic activity29 within the
Her2-enriched cohort. By contrast, IntClust 10 samples have a
higher percentage of samples with the HR deficiency Signature 3,
and consistent with this, the basal-like samples by PAM50
classification have a high percentage of samples with Signature 3.
Together, these results suggest that there is no significant
difference in the carcinogenic processes driving the development
of each subtype of breast tumours in both Asian and
Caucasian women.

Asian breast cancers exhibit enriched immune scores. Given
that population differences in the genetic, environmental and
lifestyle exposures that drive carcinogenesis could shape the
tumour microenvironment and lead to different outcomes, we
performed pathway gene set enrichment analyses (GSEA) to
determine pathways that are differentially activated between our
cohort and TCGA. Interestingly, we found that 5 out of the top 15
most differentially expressed pathways were related to the
immune system (Supplementary Table 5). We determined the
immune scores for MyBrCa, Korean, METABRIC and TCGA
Caucasian cohorts according to five different scoring methods:
ESTIMATE30, gene set variation analysis (GSVA) using gene sets
for immune cells31, GSVA using the expanded interferon-gamma
gene set32, the IMPRES method33 and CD8+ T cells scores from
CIBERSORT34. Remarkably, all five methods showed significantly
elevated immune scores in both Asian cohorts relative to the
Caucasian cohorts (Fig. 3a). Furthermore, a multiple regression
analysis of IMPRES scores for the MyBrCa and TCGA cohorts
demonstrated that the difference in IMPRES scores between the
two cohorts remained significant even after controlling for age,
stage, histological subtype, menopausal status, tumour content,
and HR/HER2 positivity (Supplementary Table 6).

As immune profiles are subtype-dependent, we compared
IMPRES scores between MyBrCa and the TCGA Caucasian
cohort across breast cancer subtypes. We observed the highest
immune enrichment was in IntClust 10, which comprises mainly
of TNBCs, in concordance with published studies35,36. More
interestingly, we found that the IMPRES scores were significantly
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higher for MyBrCa cohorts compared to TCGA Caucasian
samples independent of subtype classification (Fig. 3b). Similar
patterns were found using the other immune scores (Supple-
mentary Fig. 19) and classification methods (Supplementary
Fig. 20), suggesting a systemic enrichment of immune scores in
Asian breast cancers that occurs across the majority of molecular
subtypes.

To identify immune cell types that drive the enrichment of
immune scores in Asians, we used CIBERSORT on RNA-seq
gene expression profiles to quantify the relative abundance of 22
different immune cell types in the tumour immune microenvir-
onment. We found CD8+ T cells and macrophages are enriched

in Asian breast cancers (Fig. 3a, Supplementary Fig. 21), and this
was consistent with TIMER and GSVA with Bindea gene sets
(Supplementary Figs. 22, 23), suggesting an overall enrichment of
cytotoxic NK and T cells in Asian tumours.

In a subset of 124 patients our cohort, we compared each
patient’s IMPRES score with anti-CD8 staining of tumour-
infiltrating lymphocytes (TILs) in archival formalin-fixed paraffin-
embedded (FFPE) blocks and found a high correlation (rs= 0.45;
Fig. 3c). Similarly, IMPRES scores were highly correlated with CD3
IHC scores (rs= 0.52; Supplementary Fig. 24), and ESTIMATE
immune scores were highly correlated with CD3 and CD8 IHC
scores (Supplementary Fig. 24). Together, these data suggest that

a

b

c

8
0.4 1.0

12

0.25

0.20

0.15

0.10

0.05

0

10

8

6

4

0.5

–0.5

0

0.2

B
in

d
ea

 G
S

VA

IM
P

R
E

S
 s

co
re

IM
P

R
E

S
 s

co
re

IM
P

R
E

S
 s

co
re

C
IB

E
R

S
O

R
T

 s
co

re

E
x.

lF
N

-γ
 G

S
VA

–0.2

–0.4

0

P < 2e–16 p < 2e–16 p < 2e–16
p < 2e–16

p < 2.1e–11

6

4

E
S

T
IM

A
T

E
im

m
u

n
e 

sc
o

re
 (

10
3 )

2

0

12

13

12

11

10

9

8 n=124

p=8.3e–6

rs=0.45
7

6

0

CD8

100 Mm 100 Mm 100 Mm

CD8 CD8

5 10 15 20 25 30

3.7e–5 3.7e–5 9.1e–14 1.6e–6 1.3e–9 4.0e–6

1.6e–12

8.5e–7

4.2e–5

<2e–160.017

10

8

6

1 2 3 4– 4+
lntegrative clusters

Anti-CD8 staining (%)

SD0081
IMPRES score: 9

SD0449
IMPRES score: 10

SD1247
IMPRES score: 11

5 6 7 8 9 10

Fig. 3 The tumour immune microenvironment of Malaysian breast cancer. a Comparison of the tumour immune microenvironment in breast tumours
from the Malaysian (MyBrCa, n= 527), Korean (n= 168), METABRIC (MB, n= 997) and Caucasian TCGA (n= 638) cohorts across five quantification
methods—from left to right: ESTIMATE immune scores, GSVA using Bindea et al.‘s (2013)31 combined immune gene set, GSVA using an expanded IFN-γ
gene set (Ayers et al. 201732), IMPRES (Auslander et al. 201833) and CD8+ T-cell scores from CIBERSORT. Outliers not shown. P values indicated are for
one-way ANOVA. b Breakdown of IMPRES scores across MyBrCa and TCGA cohorts by IntClust subtype. Grey area indicates the threshold (score= 8)
used by Auslander et al.33 to separate high versus low scores. Outliers not shown. P values indicated are for two-sided student’s t tests. a–b The boxes in
box plots indicate 25th percentile, median and 75th percentile, whereas whiskers show the maximum and minimum values within 1.5 times the inter-
quartile range from the edge of the box. c Validation of tumour immune scores in the Malaysian cohort using IHC; representative images shown with
staining for CD8 in brown. IHC experiments were repeated in 124 samples across a range of IMPRES scores, with the results summarised in the figure on
the right. Right: correlation between percentage of cell stained with anti-CD8 by IHC versus IMPRES scores. P value shown is for Spearman’s correlation
coefficient.
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differences in immune scores derived from RNA-seq data are at
least in part due to differences in the TILs within each tumour.

Factors contributing to enriched immune scores. To explore the
factors contributing to enriched immune scores in Asians, we first
explored whether the generation of neoantigens through different
mutational processes is associated with immune scores. Indeed,
we found that Signatures 2 and 13 (APOBEC) and Signature 3
(HR deficiency) are positively correlated with immune scores,
whereas Signature 1 (aging) is negatively correlated (Fig. 4a, b).

We also asked if the immune signatures were associated with
the underlying tumour heterogeneity of each sample. To quantify
tumour heterogeneity, we used PyClone37 to estimate the number
of subclonal clusters in each sample. A comparison of
ESTIMATE immune scores with the number of PyClone clusters
revealed a strong negative association (rs=−0.69, p= 0.0008;
Fig. 4c), suggesting that tumours in the MyBrCa cohort with high
immune scores have correspondingly low tumour heterogeneity.
Furthermore, we also found that the MyBrCa samples have
significantly lower tumour heterogeneity relative to TCGA
samples across subtypes (Supplementary Fig. 25). These data
are consistent with a model in which the stronger immune
response in Asian breast cancer patients leads to higher selective
pressure on tumour cells and, ultimately, more homogenous
tumours in those patients38,39.

Next, in order to identify clinical or demographic factors that
could contribute to the elevated immune scores observed in Asian

breast cancer samples, we conducted linear regression analysis of
immune scores against all available clinical and demographic
data, including age, tumour size, tumour stage, tumour grade, and
tumour content. These analyses showed that elevated IMPRES
scores were associated with molecular subtype and age, but not
with other clinical or demographic factors (Supplementary
Table 7). Following up on this result, multiple linear regression
analysis of immune scores against all available molecular data,
adjusting for age and molecular subtype, showed that mutational
signature 3, tumour heterogeneity (PyClone clusters) and
predicted neoantigen binding to be independently associated
with IMPRES scores (Supplementary Table 8), although the
overall predictive ability of the model was weak (adjusted R2=
0.13).

Finally, to determine the biological pathways that are
associated with higher immune scores, we conducted GSEA
comparing tumours in the top quartile of IMPRES scores to
tumours in the bottom quartile. We found that the systemic lupus
erythematosus (SLE) pathway was the most enriched pathway for
tumours in the top IMPRES score quartile (Supplementary
Table 9). In addition, we also found enrichment in the cGAS-
STING cytosolic DNA-sensing pathway, and decreased expres-
sion of the TGF-β signalling pathway in the top quartile, which is
concordant with previous studies on the tumour immune
microenvironment (Supplementary Table 9)40–42. We confirmed
these results by comparing IMPRES scores for our cohort to
GSVA scores using the KEGG gene sets, and found a strong
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correlation between the two scores for all three pathways
(Supplementary Fig. 26).

Clinical impact of genomic profiles of Asian breast cancer. To
determine the potential clinical impact of the differences in
molecular profiles of breast cancers in Asian women, we deter-
mined the impact of the observations on overall survival. As
expected, we found that ER− patients had poorer survival com-
pared with ER+ patients, patients with IntClust 10 had poorer
survival relative to other IntClusts, and patients with basal
tumours by PAM50 had poorer survival relative to other mole-
cular subtypes (Fig. 5a). In ER+ patients alone, TP53 mutations
were associated with poorer survival (Fig. 5b). Patients with high
IMPRES scores had significantly better survival in both unad-
justed (Fig. 5b) and adjusted (Supplementary Fig. 27) models, and

the effect was stronger in ER+ patients (Fig. 5b). Interestingly, ER
+ patients with both a low IMPRES score and TP53 mutation
appear to have markedly poorer survival than other patients
(Fig. 5b), although the sample size was small (n= 8). Overall,
these data suggest that the differences in molecular profiles of
Asian breast cancer patients could have important clinical
implications, particularly in patients with ER+ tumours.

Discussion
To our knowledge, this is the largest and most extensive mole-
cular profiling study on breast tumours arising in Asian women.
Our study of Malaysian breast tumours complements previous
genomics studies of Asian breast tumours from China and South
Korea9,19,23, and more importantly, enables more-comprehensive
comparisons of Asian breast tumours with breast tumours arising
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in women of European descent5,10,23. Comparisons conducted in
this study revealed a higher prevalence of the Her2 molecular
subtypes, higher prevalence of TP53 mutations in ER+ disease
and higher overall immune signatures in Asian breast cancer, all
of which could impact clinical outcomes.

Despite the lower mean age of breast cancer in our cohort
compared with TCGA, and the association of younger age with
ER− breast cancer, we did not find an increased proportion of
triple-negative breast cancer. In contrast to other Asian studies,
which selected for individuals with young onset breast cancer19,
we also did not find a large difference in the frequency of
germline carriers for BRCA1, BRCA2, PALB2, ATM or CHEK2
relative to TCGA. The prevalence of germline BRCA mutations
that we report is slightly lower than that reported by studies that
have looked at germline BRCA mutations in the Asian popula-
tion43–45, which is likely owing to a higher mean age of diagnosis
and our cohort being unselected for age and family history of
breast cancer.

The higher prevalence of the Her2 subtype in our cohort, the
South Korean and the TCGA Asian cohorts is consistent with
immunohistochemistry-based epidemiological studies among
Asians and Asian Americans46–49. It is becoming increasingly
apparent that the lifestyle and genetic risk factors may have
overlapping but sometimes distinct effects in different subtypes of
breast cancer. In fact, a large study of 28,095 breast cancer
patients has suggested that parity may be associated with early-
onset Her2-positive breast cancers50. Incidentally, the MyBrCa
cohort20 has a higher median parity relative to the Caucasian
cohort sequenced by Nik Zainal et al. 23. Further work on the
basis for population differences in risk is warranted to understand
implications for prevention.

The higher prevalence of TP53mutations in ER+ breast cancer
in our cohort, the South Korean and the TCGA Asian cohorts is
consistent with previous findings19. However, unlike liver cancer
where TP53 mutations may be linked to population-specific risk
factors51, we found no difference in the type or location of
mutations nor in mutational signatures in Asian and Caucasian
breast tumours, suggesting that the source of mutations may be
similar in both populations. Regardless of the cause of the
mutations, TP53 mutations have been suggested to be prognostic,
but with opposite effects in different subtypes of breast
cancer52,53, and in ER+ /HER2− disease, TP53 mutations appear
to be associated with higher risk to recurrence and poorer
prognosis54–56. Notably, expression of TP53 mutations may have
different effects in different populations57, highlighting the need
for further clinical studies in diverse populations.

Finally, we observed an elevated immune score, driven by
higher cytotoxic TILs, in both Malaysian and Korean breast
tumours relative to the Caucasian tumours. In our cohort, ele-
vated immune score is also associated with better overall survival.
Our results are consistent with recent microarray-based analyses
in Asian breast cancer patients58. Intriguingly, ethnic-specific
differences in the tumour microenvironment, such as hypoxia
have been reported and appeared to be associated with higher
TP53 and lower PIK3CA mutations in Asians59. We found that
the elevated immune scores are associated with the SLE, cGAS-
STING cytosolic DNA-sensing and TGF-β signalling pathways,
HR deficiency, neoantigen prediction and tumour heterogeneity.
However, these associations only account for a small proportion
of the population variance in immune scores, highlighting the
need for further studies in this area.

In summary, this study may have important implications on
our understanding of breast cancers arising in different popula-
tions. It has been reported that Asian-American breast cancer
patients have better survival than other racial/ethnic groups60,61,
and the molecular basis of breast cancers in Asian women

reported in this study highlights some of the possible explana-
tions for these population-specific differences in outcome.

Methods
Biospecimen collection and pathological assessment. In all, 661 tissue samples
were collected from breast cancer patients recruited as part of the MyBrCa study at
the Subang Jaya Medical Centre, Subang Jaya, Malaysia. The patients were recruited
sequentially as seen in the clinic from a year to year period. The project was reviewed
and approved by the Independent Ethics Committee, Ramsay Sime Darby Health
Care (reference no: 201109.4 and 201208.1), and written informed consent was given
by each individual patient. Matching blood samples were obtained prior to surgery,
whereas tumour samples were sectioned from the primary tumour during surgery
and were immediately frozen and stored in liquid nitrogen.

Patients were excluded from this study for the following criteria: no
corresponding tumour samples (n= 5), no corresponding germline samples (n=
5) and those who withdrew consent (n= 12). Tumour samples were further
excluded after clinicopathological review if they were found to be from rare
histological subtypes and other breast diseases (n= 5). Tumour samples were then
sectioned for DNA and RNA extraction, and the top and bottom sections were
stained with haematoxylin and eosin and reviewed for tumour content. Tumour
samples with an average tumour content of <30% (n= 50) and those with
insufficient DNA (n= 8) were excluded from the study.

A small minority of patients that were included in this study (n= 26) received
neoadjuvant chemotherapy prior to tissue collection. Tissue samples also included
four cases of bilateral breast cancer and 1 case of recurrence.

Sample selection and genomic material extraction. DNA from blood samples
was extracted using the Maxwell 16 Blood DNA Purification Kit with the Maxwell
16 Instrument, according to standard protocol. DNA from tumour samples was
extracted with the QIAGEN DNeasy Blood and Tissue Kit according to standard
protocol, followed by quantitation using the Qubit HS DNA Assay kit and Qubit
2.0 fluorometer (Life Technologies Inc). RNA from tumour samples was extracted
using the QIAGEN miRNeasy Mini Kit with a QIAcube, according to standard
protocol. Total RNA was quantitated using Nanodrop 2000 Spectrophotometer
and RNA integrity was confirmed using Agilent 2100 Bioanalyzer. For DNA
samples, only samples with a concentration above 20.0 ng/µL were included for
sequencing. For RNA samples, only samples with a concentration of at least 20.0
ng/µL and a RIN number above 7 were included for sequencing.

DNA-sequencing libraries. DNA libraries were generated from 50 ng of genomic
DNA using the Nextera Rapid Capture Exome kit (Illumina, San Diego, USA) as
per manufacturer’s instructions. Prior to exome capture, 4 nM pools of DNA
libraries (n= 48) was subjected to single end 50 shallow WGS. Exome capture was
performed in pools of 3 and subjected to paired end 75 sequencing on a
HiSEQ4000 platform (Illumina, San Diego, USA).

RNA-sequencing libraries. RNA libraries were prepared from 550 ng of total
RNA using the TruSeq Stranded Total RNA HT kit with Ribo-Zero Gold (Illumina,
San Diego, USA) as per manufacturer’s instructions and subjected to paired end
75 sequencing on a HiSEQ4000 platform (Illumina, San Diego, USA).

RNA-sequencing alignment and quality assessment. RNA-seq reads were
mapped to the hs37d5 human genome and the ENSEMBL GRCh37 release 87
human transcriptome using the STAR aligner (v. 2.5.3a)62. Samples with <15
million mapped fragments were excluded from further RNA-seq analyses. Gene-
level aligned fragment counts were generated using featureCounts (v. 1.5.3), while
gene-level expression in transcripts-per-million (TPM) was calculated using RSEM
(v1.2.31)63. Genes with an average count of less than 10 or an average TPM score of
< 0.1 were filtered out and excluded from further analyses. Variant calling from
RNA-seq data for sample ID reconfirmation and downstream analyses was also
conducted using the GATK Best Practices workflow for RNA-seq—in brief, STAR-
mapped reads were processed to mark duplicates with Picard, followed by exon
splitting & trimming and base recalibration using GATK, and lastly variants were
called using HaplotypeCaller. Sample identities were verified as described below in
the WES section.

Molecular subtyping. Gene-level count matrices for the SD and TCGA cohort
were transformed into log2 counts-per-million (logCPM) using the voom function
from the limma (v. 3.34.9) R package. The transformed matrices were then was
subtyped according to PAM50 and SCMgene designations using the Genefu
package in R (v. 2.14.0). In addition, each matrix was quantile-normalised and
subtyped according to integrative clusters using the iC10 R package (v. 1.5). For the
METABRIC cohort, the normalised microarray expression matrix from the dis-
covery set was used for Genefu and ic10 subtyping without modification. For
IntClust 4, we designated each sample as being ER+ or ER− by fitting a two-
component mixture model to the distribution of ESR1 expression in TPM using an
expectation–maximisation algorithm as implemented in the mixtools (v. 1.1)
package in R.
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Unsupervised cluster analysis. K-means consensus clustering was conducted
using gene-median centred TPM gene expression scores for the MyBrCa and
TCGA Caucasian cohorts, using the ConsensusClusterPlus (v.1.46) package in R.

Classification of TNBC subtypes. TPM gene expression scores for MyBrCa TNBC
samples were first normalised using gene-median centreing. Then, the 80 genes
from the TNBC classifier in Burnstein et al.22 was used to conduct hierarchical
clustering, as implemented in the heatmap.2 function in R using default options.
Each cluster was assigned to the four subtypes according to pathway expression:
high expression of hormone-related pathways for the LAR subtype, high expression
of immune pathways and developmental growth genes as the IM, low expression of
immune pathways but high expression of developmental growth genes as the BLIS
subtype, and finally the remaining cluster with moderate expression of
epithelial–mesenchymal transition-related pathways as the MES subtype.

Profiling the tumour immune microenvironment. Overall immune cell infiltration
in the bulk tumour samples was assessed from RNA-seq TPM gene expression scores
using ESTIMATE (v. 1.0.13)30, as well as with GSVA (v. 1.26) using the combined
immune cell gene sets from Bindea et al.31. For each sample, we also scored the
immune features predictive of checkpoint inhibitor immunotherapy using IMPRES
scores33 (only 14 out of 15 of the predictive features were available in our datasets) as
well as with GSVA using the Expanded IFN-gamma gene set from Ayers et al.32. The
relative abundance of specific immune cell populations was estimated from RNA-seq
TPM scores with the CIBERSORT34 and TIMER64 web tools, as well as through
GSVA with individual immune gene sets from Bindea et al.31. All box plots shown
are constructed in the same way—the boxes indicate 25th percentile, median, and
75th percentile, whereas whiskers show the maximum and minimum values within
1.5 times the inter-quartile range from the edge of the box.

Regression analyses of clinical and molecular features. To assess the associa-
tions between various clinical and molecular features, we performed multiple
regression analyses using the base stats package in R (v. 3.5.1). For continuous
variables such as IMPRES score, regular linear regression was applied using the
“lm” function to estimate regression coefficients and statistical significance.

Shallow WGS alignment and CNA assessment. The sequenced reads were
mapped to the hg19 reference genome using bwa-mem, sorted using samtools and
dedupped using picard (http://broadinstitute.github.io/picard). Mapped reads were
analysed using QDNAseq65 to obtain 100 kb segmented copy number profiles
using standard protocol and default parameters. Copy number aberrations were
called using CGHcall (v 2.40) as implemented in the QDNASeq R package, which
calls each segment as normal, copy number gain, copy number loss, amplification
or deletion using a mixture model. ENSEMBL hg19 genes with HUGO names were
mapped to the segmented copy number calls by their start positions to determine
the copy number status for each gene in each sample.

WES analysis alignment and quality assessment. The sequenced reads were
trimmed for Illumina adapters using trim_galore! (https://github.com/
FelixKrueger/TrimGalore) and mapped to the human genome b37 plus decoy
genome using bwa-mem version 0.7.12. The mapped reads were merged and sorted
using samtools, and de-duplicated using picard (http://broadinstitute.github.io/
picard). Realignment and base quality score recalibration were performed using
GATK366. Realignment around indels was done concurrently on the tumour and
normal pairs. For bilateral cases, the two tumours and normal were realigned
simultaneously. Sample identities were verified by determining the concordance of
the genotypes using GATK3 HaplotypeCaller66. In brief, the haplotypes at
2000–5000 dbSNP positions were called for all samples (RNA-seq and WES
experiments) in an all-versus-all manner. True match will typically have upwards
of 95% concordance between samples from the sample individuals. Samples with
ambiguous identities were excluded from further analyses.

Data download. We downloaded the TCGA10 and METABRIC5 data via the
Genomic Data Commons Data Portal or cBioPortal67. We additionally down-
loaded data for Nik-Zainal et al.23 (from ftp://ftp.sanger.ac.uk/pub/cancer/Nik-
ZainalEtAl-560BreastGenomes) and Zhengyan Kan et al.19 (from https://www.
nature.com/articles/s41467-018-04129-4). For Nik-Zainal WGS somatic mutation
analyses, we delimited our analysis to only the Nextera Rapid Capture regions with
additional flanking 100 bp.

Short-nucleotide variants calling. We first constructed panel-of-normals by
artefact detection mode of GATK3 Mutect266, retaining only sites that are present
in two or more normal samples. In all steps, we only concentrated on the Nextera
Rapid Capture regions with additional flanking 100 bp. For SNVs, we used posi-
tions that are called by Mutect2, and applied following filters: minimum 10 reads in
tumour and 5 reads in normal samples, OxoG metric <0.8, variant allele frequency
(VAF) 0.075 or more, p value for Fisher’s exact test on the strandedness of the
reads 0.05 or more, and SAF > 0.75. For positions that are present in five samples or
more, we removed two positions that were not in COSMIC and in single tandem

repeats. We also removed variants that have VAF at least 0.01 in gnomAD, and
considered only variants that are supported by at least four alternate reads, with at
least two reads per strand. For indels, we also required the positions to be called by
Strelka268. We manually salvaged an indel in PALB2 gene in sample SD0028 which
we have identified using PCR. We annotated the variants using Oncotator version
1.9.9.0. We plotted mutation positions as lollipop plots using MutationMapper67.

Cancer cell fractions. CCFs were calculated for nine common breast cancer driver
genes using VAFs, copy number and tumour purity estimates obtained from WES,
following the methodology described in Pereira et al.7. Copy number and tumour
purity were generated for this analysis using the ASCAT R package (v. 2.5.2) on
allele counts generated from WES bam files using alleleCounter (v. 4.0.1).

Driver genes analysis. We considered samples from WGS and WES experiments
(MyBrCa, TCGA Asian, Korean, WGS Asian, TCGA Caucasian, WGS Caucasian)
for driver gene analyses24. We considered genes that are mutated in at least 1% of
samples in Asian ER−, Asian ER+, Caucasian ER+ or Caucasian ER−. We cal-
culated ONC score as the percentage of missense mutation counts at the most
recurrent amino-acid positions over all mutations, and considered only genes with
at least five recurrent mutations. We calculated TS (score) as the percentage of
inactivating mutation counts over all mutations, and considered only genes with at
least five inactivating mutations. We selected genes with either ONC or TSG scores
of >20, and queried the Integrative Onco Genomics database (www.intogen.org)
for known cancer driver genes (Supplementary Tables 2 and 3). We sorted 40 genes
according to the enrichment in Asian ER+ over Caucasian ER+ and plotted the
prevalence and the ONC/TSG scores (Supplementary Fig. 11).

Association patterns of driver genes. We considered the top 15 mutated genes
from driver genes analysis. We calculated odds ratio and determined the likelihood
of co-occurrence or mutual exclusivity of missense or inactivating mutations using
Fisher’s exact test. We displayed associations with p value of <0.05 after Bonferroni
correction and plotted the log odds ratio.

Mutational signatures. We used deconstructSigs69 to determine the weights of
previously reported breast cancer mutational signatures (Signatures 1, 2, 13, 3, 8, 6,
15, 20, 26, 5, 17, 18 and 30) from COSMIC matrices (version 2, March 2015) in
samples with at least 15 sSNVs. We determined the proportions of mutational
signatures in the different data sets by combining the variants from all samples, and
used the function plotSignatures to plot the mutational spectra. To determine the
difference in mutational signature weights between the top and bottom immune
quartile of MyBrCa samples, we ranked the samples by their ESTIMATE scores,
and performed one-sided rank sum Wilcoxon’s test on the two categories.

Germline mutation analysis. Carriers of deleterious germline mutations in
BRCA1, BRCA2, TP53, PALB2, ATM and CHEK2 were identified from targeted
sequencing of the MyBrCa cohort (BRIDGES study, in review), which were con-
firmed with Sanger sequencing. Comparable data from TCGA was taken from
Huang et al.26.

Correlation between immune scores and mutational signatures. We calculated
Spearman’s correlation coefficient between the mutational signatures and immune
scores and plotted the correlations as heatmaps.

Differential expression and pathway analyses. Gene-level count matrices were
normalised using the “Trimmed Mean of M-values” method implemented in the
edgeR (v. 3.20.9) R package. The count matrices were then transformed into
logCPM using the voom function from the limma package in R. Differentially
expressed genes were determined by empirical Bayes moderation of the standard
errors towards a common value from a linear model fit of the transformed count
matrices as implemented in the limma package, with the threshold for differential
expression set as false discovery rate (FDR) < 0.001 and absolute log fold-change
>0.2. For pathway analysis, DE genes were further filtered for FDR < 1e-50, and
ranked according to absolute log fold-change. The top 1000 ranked genes were
queried in Reactome (www.reactome.org) to determine the top enriched pathways.
Further pathway analyses were also conducted using GSEA (v. 3.0) on quantile-
normalised gene-level count data. GSEA was run for 1000 permutations with the v.
6.2 Hallmark and KEGG gene sets from MSigDB.

Validation of immune scores with immunohistochemistry. FFPE blocks for 207
patients with sequencing data were sectioned and stained for anti-CD3 (clone
2GV6, predilute; Ventana Medical Systems), anti-CD4 (clone SP35, predilute;
Ventana Medical Systems), anti-CD8 (clone SP57, predilute; Ventana Medical
Systems) and anti-PD-1 (clone SP263, predilute; Ventana Medical Systems) using
an automated immunostainer (Ventana BenchMark ULTRA; Ventana Medical
Systems, Tucson, AZ) without any dilution. Stained slides were digitised using an
Aperio AT2 whole slide scanner. CD3, CD4 and CD8 staining was quantified using
the Aperio Positive Pixel digital pathology tool and PDL-1 expression was
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determined using the Combined Positive Score system. The data were further
verified by a pathologist (PR).

Quantification of tumour heterogeneity. Tumour heterogeneity was determined
using PyClone (v 0.13.1)37 with default options to estimate the number of sub-
clonal clusters within each tumour sample. Allele counts used for the PyClone
input were extracted from the GATK output MAF files, whereas copy number
input data were generated by ASCAT (v. 2.5.2) from WES allele counts generated
by alleleCounter (v 4.0.1). Tumour heterogeneity was also separately quantified for
each sample in the MyBrCa and TCGA cohorts using the MATH method
described in Pereira et al.7 from MAF files from WES.

Neoantigen analysis. Sample HLAs were determined using Polysolver from
tumour and normal DNA WES data. Only HLA alleles that were concordant in
tumour and normal WES data were considered. Somatic mutations were annotated
using VEP. All possible neoantigen peptides (9- to 11-mers) encompassing the
nonsynonymous mutations were predicted using a combination of NetMHCpan
and NetMHC on the pVAC-seq platform70. Only neoantigens with predicted
binding of less than 500 nM were considered.

Survival analysis. Overall survival data were obtained for each patient by querying
their names and identity card numbers against the Malaysian National Registry
records of deaths. Patients that did not return any matches against the database
were assumed to still be alive, and vice versa. Length of survival was defined as the
period of time from the date when patients were recruited into the study until the
date of death as recorded by the Malaysian National Registry for patients who have
passed away, or until the date when the Malaysian National Registry was last
queried for patients assumed to still be alive. For all survival analyses in this study,
only patients with at least two years of survival data were included (n= 367).
Unadjusted Kaplan–Meier analyses and log-rank tests were conducted using the
survival package in R (v. 2.44) and plotted using the “ggsurvplot” function from the
survminer R package (v. 0.4.4). Cox proportional hazard models were built using
the “coxph” function from the survival package and plotted using the “ggforest”
function from survminer.

Box and whiskers plots. All box and whiskers plots in the main and supplemental
figures are constructed with boxes indicating 25th percentile, median and 75th
percentile, and whiskers showing the maximum and minimum values within 1.5
times the inter-quartile range from the edge of the box, with outliers not shown.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sequencing data for this study (WES, RNA-seq and sWGS bam files) are available on the
European Genome-phenome Archive under the study accession number
EGAS00001004518. Access to controlled patient data will require the approval of the
MyBrCa Tumour Genomics Data Access Committee upon request to Soo-Hwang Teo at
genetics@cancerresearch.my. Publicly available data sets that were included in this study
are accessible as follows: TCGA10 and METABRIC5 data are available via the Genomic
Data Commons Data Portal (https://portal.gdc.cancer.gov/) and cBioportal (https://www.
cbioportal.org/)67, whereas data from Nik-Zainal et al.23 are available from ftp://ftp.
sanger.ac.uk/pub/cancer/Nik-ZainalEtAl-560BreastGenomes and data from Zhengyan
Kan et al.19 are available from https://www.nature.com/articles/s41467-018-04129-4.
Other public databases that were accessed include Reactome (www.reactome.org), the
Integrative Onco Genomics database (www.intogen.org) and gnomAD (gnomad.
broadinstitute.org). The remaining data are available within the Article, Supplementary
Information or from the authors upon request.

Code availability
Code that was used to create the main figures in this study is available at https://github.
com/panjw0/MyBrCa_Genomics.
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